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Abstract 

Researchers often use the I2 index to quantify the dispersion of effect sizes in a meta-analysis. Some 
suggest that I2 values of 25%, 50%, and 75%, correspond to small, moderate, and large amounts of 
heterogeneity.  In fact though, I2 is a not a measure of absolute heterogeneity.  Rather, it tells us what 
proportion of the observed variance reflects variance in true effect sizes rather than sampling error. This 
distinction between an absolute number and a proportion is fundamental to the correct interpretation 
of I2. A meta-analysis with a low value of I2 could have only trivial heterogeneity but could also have 
substantial heterogeneity.  Conversely, a meta-analysis with a high value of I2 could have substantial 
heterogeneity, but could also have only trivial heterogeneity.  Our goal in this paper is to explain what I2 
is, and how it should (and should not) be used in meta-analysis. 

Introduction 

The goal of a meta-analysis is not simply to report the mean effect size, but also to report how the effect 
sizes in the various studies are dispersed about the mean.  To report that an intervention increases 
scores by 50 points is only part of the picture.  We need to know also if the impact is consistent, varies 
moderately, or varies widely, from study to study. 

Researchers often use the I2 statistic to quantify the amount of dispersion (Higgins and Thompson, 2002; 
Higgins, Thompson, Deeks, and Altman, 2003).  I2 is an intuitive statistic for many reasons.  It ranges 
from 0% to 100%, so we have a clear sense of where any given study falls relative to this range.  The 
range is independent of the specific effect size, and so has the same meaning for a meta-analysis of odds 
ratios as it does for a meta-analysis of mean differences.  I2 is largely unaffected by the number of 
studies in the meta-analysis, and so allows us to compare the I2 for different analyses even if the number 
of studies differs.  Most computer programs report I2, and so it is readily available. 

Additionally, there are widely used benchmarks for I2.  For example, I2 values of 25%, 50%, and 75% have 
been interpreted as representing small, moderate and high levels of heterogeneity.  These are seen to 
provide a convenient context for discussing the results of any analysis.  For these reasons, the use of I2 
as the primary basis for discussing how much heterogeneity is present, and the use of benchmarks for 
interpreting the magnitude of heterogeneity, has become ubiquitous in meta-analysis.   

Unfortunately, the use of I2 in this way is inappropriate.  It represents a fundamental misunderstanding 
of what I2 is, and how it should (and should not) be used.  Our goal in this paper is to explain what I2 is, 
how to interpret it, and why its common use is fundamentally wrong.  In place of I2 we will discuss 
indices that do report the dispersion of true effects on an absolute scale.  These are the indices that 
actually address the questions that people think are being addressed by I2. 
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What we mean by heterogeneity 

A simple thought experiment will make it clear that I2 does not tell us how much the effect size varies 
across populations. Suppose we are evaluating an intervention that is intended to reduce the amount of 
time people spend recovering from a stroke.  We perform a meta-analysis of studies that tested this 
intervention in various populations, and determine that patients in the treated group meet their goal a 
mean of 50 days sooner than those in the control group.   

Next, we ask how much the effect size varies.  That is, we want to know if the treatment effect typically 
falls (a) in the range of 40 days to 60 or days, or (b) in the range of 10 days to 90 days, or (c) some other 
range.  If (a) is true, then the treatment can be applied with comparable results in all settings.  If (b) is 
true, we may wish to use the treatment in some settings but not in others. 

Now, suppose we are told that I2 is 25%.  Does the treatment effect vary as in (a) or (b)? The answer is 
that we do not know.  It could be (a), or it could be (b), or it could be something else entirely.  The 
reason we do not know is that I2 is in a metric that goes from 0% to 100%.  By itself, this statistic tells us 
nothing about the actual range of effects (Higgins, 2008; Rücker, Schwarzer, Carpenter, Schumacher, 
2008; Mittlböck, Heinzl, 2006; Huedo-Medina, Sánchez-Meca, Marín-Martínez, Botella, 2006). 

Rather, to distinguish between (a), (b), and (c), we need an index that quantifies dispersion as a number 
of days.  Such an index is the standard deviation of the true effect sizes, which we will call T. We 
generally assume that most effects will fall within two standard deviations of the mean effect.  If the 
standard deviation is T = 5 days then the treatment effect varies over 20 days, as in (a).  If the standard 
deviation is T = 20 days, then the treatment effect varies over 80 days, as in (b). 

Observed effects versus true effects 

If I2 does not tell us how much the treatment effect varies, then what does it tell us?  To address this 
question we first highlight an important difference between a meta-analysis and a primary study.  In a 
primary study, the scores that we observe are usually treated as the true scores for each subject.  
Therefore, the distribution of observed scores serves as the distribution of true scores.  By contrast, in a 
meta-analysis, we need to distinguish between the observed effect size and the true effect size.  The 
observed effect size is the effect size that we see in a study.  It serves as the estimate of the effect size in 
the study’s population, but invariably differs from the true effect size in that population due to sampling 
error. By contrast, the true effect size is the actual effect size in the study’s population. By definition, the 
true effect size for a population is the effect size that we would see with an infinitely large sample size, 
and (it follows) no sampling error.  The problem that we need to address is that the distribution of 
observed effects is not the same as the distribution of true effects. 
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Figure 1 is a forest plot of the example we introduced a moment ago.  The left-hand frame shows the 
distribution of observed effect sizes.  The mean effect is 50 days, the standard deviation is 27.4, and 
most effects fall in the range of −5 to 105 as indicated by the line [A] at the bottom of the plot.  This 
would suggest that the effect size varies substantially from study to study.  The right-hand frame shows 
the distribution of true effect sizes.  The mean effect is 50 days, the standard deviation of true effects is 
8.66 days, and most effects falls in the range of 33 to 67 as indicated by the line [B] at the bottom of the 
plot.  It tells us that the effect size is reasonably consistent across the studies. 

 

Dispersion of observed effects  Dispersion of true effects 

 

VOBS=750 
VERR=675 

T2=75 
 

SOBS=27.4 
 

M ± 2S 
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I2=10% 
 
 
 

I=32% 

T2=75 
 
 
 

T=8.66 
 

M ± 2T 
33 | 67 

 

Figure 1 | Dispersion of observed effects and dispersion of true effects 

Why do the observed effects (at left) vary more than the true effects (at right)?  The reason is that the 
variance of the observed effects incorporates both the variance of true effects and also random 
sampling error.  Concretely, if T2 is the variance of the true effects, VERR is the variance due to sampling 
error (assumed here to be the same in each study), and VOBS is the variance of the observed effects, then 

 2
OBS ERRV T V= + .  

In this example the variance of observed effects (at left) is 750, and it can be decomposed into variance 
of true effects and variance due to sampling error as 

 750 75 675= + .   

If we want to know about the potential utility of the treatment, we have little interest in the left-hand 
frame where the effects vary over 100 days, since the dispersion we see here is partly based on random 
sampling error.  Rather, we care about the dispersion in the right-hand frame, where the effects are 
confined to a range of 34 days.  This is the frame that speaks to the utility of the treatment. 

Since we start with the left-hand plot but we need to impute the right-hand plot, it would be helpful to 
have an index that speaks to the relationship between the two.  One index for this is I2.  Recall that the 
left-hand plot is based on T2 + VERR whereas the right-hand plot is based on T2 alone.  The I2 index 
quantifies this relationship as   

A B 
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or (equivalently) as  

 =
2

2
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V

.   

The first formula makes it clear that I2 tells us what proportion of the variance in observed effects 
reflects variance in true effects rather than sampling error.  The second formula makes it clear that I2 
gives us the ratio of the variance in the right-hand plot to the left-hand plot.  It follows that if we know 
the variance of the observed effects and I2 we can compute the variance of true effects using 

 2 2
OBST V I= × .   

If we know the standard deviation of the observed effects (SOBS, the square root of VOBS) and I2 we can 
compute the standard deviation of true effects (T) using 

 2
OBS OBST S I S I= × = × .   

Similarly, if we know the range of the observed effects (ROBS) and I2 we can compute the range of true 
effects (R) using 

 2
OBS OBSR R I R I= × = × .   

Applying these formulas to the values in Figure 1 we get 

 
2

2
2

75 10%
75 675ERR

TI
T V

= = =
+ +

,   

 
2

2 75 10%
750OBS

TI
V

= = = ,  

 2 2 750 10% 75OBST V I= × = × = ,   

 27.4 32% 8.66OBST S I= × = × = ,   

and 
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 105 32% 34OBSR R I= × = × = .   

These values are included in the center columns of Figure 1. 

Where Figure 1 displayed one meta-analysis, Figure 2 displays a series of meta-analyses.  For each 
analysis, the left-hand plot shows the observed effects while the right-hand plot shows the true effects.  
The center columns show what happens if we apply these formulas.  The second analysis in Figure 2 is 
identical to the analysis we saw a moment ago. 

By focusing on the left-hand column we can get an intuitive sense of why I2 goes from 0% (at the top) to 
100% (at the bottom).  The observed effects (and so VOBS) are identical in all rows.  What differs as we 
move from row to row is that the error (VERR) decreases.  If the observed variance is constant but the 
proportion due to error decreases, then the proportion attributed to variance in true effects (that is, I2) 
must increase.   

By focusing on the right-hand column we can get an intuitive sense of what happens if the observed 
variance is a constant and I2 increases. In every case we multiply the variance of observed effects by I2 to 
get the variance of true effects.  When I2 is low (at the top) the variance of true effects is small and so 
the true effects lie close to the mean.  The range of true effects (the line underneath the plot) is narrow.  
As we move from row to row I2 goes up, and so the variance of true effects goes up.  Effect sizes move 
further from the mean.  The range of true effects (the line underneath the plot) widens. 

By looking at the entire page we can see a clear (inverse) relationship between the error bars at left and 
the dispersion of true effects at right. The variance of observed effects is constant in all rows and 
incorporates VERR and T2.  It follows that as VERR goes down, T2 goes up. As we move from row to row, the 
error bars disappear (as it were) from the left-hand plot and serve to expand the range of effects (and 
95% interval) in the right hand plot.     

A useful way to think about the relationship between any left-hand plot and the corresponding right-
hand plot is as follows.  The left-hand plot reflects the dispersion that we actually see.  The right-hand 
plot reflects the dispersion that we would see if each study had an extremely large sample size and 
virtually no sampling error. 

A useful way to think about I2, is that it serves as a bridge between the left-hand plot and the 
corresponding right-hand plot.  We can multiply the variance of observed effects (at left) by I2 to get the 
variance of true effects (at right).  Thus, for example, the meta-analysis in the second row has an I2 value 
of 10%.  The variance of the observed effects is 750, and we multiply this by 10% to get the variance of 
the true effects, which is 75.  These details are displayed in the center columns, and they quantify the 
relationship between the left-hand and the right-hand plot. 
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Dispersion of observed effects  Dispersion of true effects 
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Figure 2 | I2 as a link between dispersion of observed effects and dispersion of true effects | Part 1 

http://www.meta-analysis-workshops.com/


 

                 www.Meta-Analysis-Workshops.com                                                       8 

 

Dispersion of observed effects  Dispersion of true effects 
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Figure 3 | I2 as a link between dispersion of observed effects and dispersion of true effects | Part 2 
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I2 is not a measure of absolute variance 

To this point, we have established that I2 is a proportion, and not an absolute value. Nevertheless, in 
Figure 2 once we know I2 we have a pretty good idea of the actual dispersion.  Therefore, one might 
assume that I2 can serve as a surrogate for T. Unfortunately this is not the case.  While there is a strong 
relationship between I2 and T in Figure 2, this is only because the variance of observed effects is the 
same for all rows in this figure. Once we leave the artificial constraints of this figure, the relationship no 
longer exists. This is evident when we consider Figure 3.  This follows the same structure as Figure 2.  
Again, as we move from row to row, the observed variance remains the same but the error variance 
goes down.  It follows that this yields an increase in I2 and a corresponding increase in T2.  The difference 
between Figure 2 and Figure 3 is that the absolute amount of observed variance is greater in the former 
(VOBS = 750) than in the latter (VOBS = 187.5).  Since we multiply I2 by the observed variance to get the 
variance of true effects, for any given value of I2 (with the exception of zero) the variance of true effects 
will be larger in Figure 2. 

• Compare the third row in the two figures.  In both cases I2 is 25%.  In Figure 2 this corresponds 
to a standard deviation of around 9 days, in Figure 3 to a standard deviation of around 4.5 days.   

• Compare the fourth row in the two figures.  In both cases I2 is 50%.  In Figure 2 this corresponds 
to a standard deviation of around 20 days, in Figure 3 to a standard deviation of around 10 days. 

• Compare the fifth row in the two figures.  In both cases I2 is 75%.  In Figure 2 this corresponds to 
a standard deviation of around 24 days, in Figure 3 to a standard deviation of around 12 days. 

Thus, if we are told simply that I2 is 25% or 50% or 75%, without additional context, we do not have any 
real sense of the actual dispersion.   

Not only is I2 a poor surrogate for the heterogeneity of true effects; it cannot reliably tell us which of two 
meta-analyses shows more heterogeneity in true effects.  For example, suppose we are told that one 
meta-analysis reported an I2 of 25% while another reported an I2 of 75%.  If both meta-analyses had 
comparable variances of observed effects, the comparison would be meaningful. This would be the case 
if both values came from Figure 2 or if both values came from Figure 3.  However, suppose that the first 
I2 comes a meta-analysis with more dispersion in the observed effects (Figure 2) while the second comes 
from a meta-analysis with less dispersion in the observed effects (Figure 3).  We have extracted the 
relevant row from each figure (corresponding to I2 of 25% in Figure 2 and I2 of 75% in Figure 3) and 
reproduced these rows in Figure 4.  In this case, the I2 of 25% corresponds to a standard deviation of 
about 14 days in true effects, while the I2 of 75% corresponds to a slightly smaller standard deviation of 
about 12 days in true effects.  Thus, the first meta-analysis (where I2 is 25%) has more variance than the 
second (where I2 is 75%). Someone using I2 as an index of absolute variance would get this backwards, 
and conclude that there is less variance in the first.  Indeed, someone using benchmarks of 25%, 50%, 
and 75% might assign a label of “Small” variance to the meta-analysis with more variance, and “Large” 
variance to the meta-analysis with less variance. 
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Dispersion of observed effects  Dispersion of true effects 
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Figure 4 | Relationship between I2 and dispersion of true effects for two sets of studies 

 

How I2 should be used 

I2 can be used together with the observed effects to give us a sense of the true effects.  For example, if 
we are presented with a plot of the observed effects we can use I2 to mentally re-scale the plot and get 
some sense of how the true effects are distributed. While we could re-scale the plot using I2, it is more 
intuitive to work with I (the square root of I2), since this allows us to think in linear units rather than 
squared units. 

For example, consider Figure 2, where the observed effects always range over 110 days.  If I2 is 10%, 
then I is 32% and the true effects range over 34 days (row 2).  If I2 is 25% then I is 50% and the effects 
range over 54 days (row 3).  If I2 is 75% then I is 87% and the true effects range over 94 days (row 5).   

Similarly, consider Figure 3, where the observed effects always range over 54 days.  If I2 is 10%, then I is 
32% and the true effects range over 18 days (row 2).  If I2 is 25% then I is 50% and the effects range over 
28 days (row 3).  If I2 is 75% then I is 87% and the true effects range over 48 days (row 5).   

To be clear, all of this is intended as a back-of-the-envelope approximation.  If we are presented with a 
forest plot and I2, we can use the two together to get a sense of the absolute dispersion.  If we do plan 
to use I2, then this is the way to use it. However, none of this is optimal.  It would be better to have 
access to more direct estimates of the absolute dispersion.  We turn to that now.   
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Range of effects 

Immediately above we showed how I2 can be employed, along with the forest plot, to address the 
question “How much does the effect size vary from study to study?” For the person reading a meta-
analysis that provides limited information, this might be the best option.  However, for the person 
reporting the meta-analysis, a much better approach is to report the amount of dispersion directly.  This 
can be achieved by presenting a range within which a particular proportion of effect sizes, say 95% of 
them, are expected to lie. An approximate interval for this, as well as a prediction interval for the true 
effect in a future similar study, are briefly described in the Appendix.  

When we report the actual range of effects (rather than or in addition to I2) we are accomplishing two 
important things.  First, we are shifting from a proportion to an absolute value. To say that I2 is 10% tells 
us nothing about the absolute amount of dispersion. By contrast, if we reported that the true effects 
range over 20 days, then we have a clear sense of the dispersion in meaningful units.  Second, we are 
reporting the dispersion in the context of the mean effect size.  To report that the true effects range over 
60 days gives us the amount of dispersion, but to understand the substantive impact of that dispersion 
we need to know the actual range of effects.  A 60-point range of effects has a very different impact 
when centered on a mean of 50 as compared with a mean of 20.  In the first case the effects range from 
20 to 80. The effects are all positive, but range from small to moderate.  In the second case the effects 
range from minus 10 to 50.  The treatment is harmful in some populations and helpful in others.  When 
we report the actual range, we are providing all of this information in a clear and unambiguous way. 

Some important caveats 

There are two issues that we have not addressed because they are not related to the relationship 
between I2 and T2.  However, they are important to the discussion of heterogeneity.  First, the estimates 
of I2 and T2 are not likely to be accurate (or even close to accurate) unless the number of studies in the 
meta-analysis is substantial (Ioannidis, 2007).  Second, we compute a range assuming that the true 
effects are normally distributed about the mean.  The validity of this assumption certainly varies from 
one domain to another.  Finally, since our goal in this paper was to explain the distinction between I2 
and T2 we used examples that allowed us to work with simplified versions of some formulas which are 
correct only when all studies in the meta-analysis are the same size.  More general versions of these 
formulas are presented in the Appendix. 

Conclusions 

When we ask about “heterogeneity” of effects we usually are asking about the substantive or clinical 
implications of the heterogeneity.  Because this is what researchers care about, researchers generally 
assume that this is what is being captured by I2.  A small value of I2 is interpreted as meaning that the 
effect size is comparable across studies. A large value of I2 is interpreted as meaning that the effect size 
varies substantively across studies. 

In fact, I2 does not tell us how much the effect size varies.  I2 tells us about the extent of inconsistency of 
findings across studies in the meta-analysis, and reflects the extent to which confidence intervals from 
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the different studies overlap with each other. The extent of this overlap tells us nothing about the actual 
study to study dispersion in effects.  Rather, it tells us what proportion of the observed variance would 
remain if we could eliminate the sampling error – if we could somehow observe the true effect size for 
all studies in the analysis.  I2 can be used together with the observed effects to give us a sense of the true 
effects.  For example, if we are presented with a plot of the observed effects we can use I2 to mentally 
re-scale the plot and get some sense of how the true effects are distributed. However, this approach 
yields only a rough estimate of the actual dispersion.   

If we care about the actual range of effects, then we should report the actual range of effects.  For 
example, we can report that the effect size varies from 40 days to 60 days.  This provides the range in 
the actual metric of the effect size.  This provides the information that people need, and that they think 
is being provided by I2.   
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Appendix 

Our goal in this paper was to explain the distinction between I2 and T2.  To this end we used a series of 
unrealistically simple examples so that we could focus on the conceptual issues.  In any real meta-
analysis the computations would be more complicated than those presented above.  Here, we outline 
these more general computations. 

Formula for computing I2 

We used examples where the sampling error variance was identical for all studies.  In this case the true 
variance is simply the observed variance minus the (constant) error variance.  In any real analysis the 
sampling error variance will differ from one study to the next, and so the computations must be based 
on weighted sums of squares rather than variances.   

The formula for I2 is normally given as  

 2 Q dfI
Q
−

= ,  

where Q is the sum of squared deviations (of each effect size from the mean effect size) on a 
standardized scale (where each deviation is divided by the standard error of the corresponding study).  
This formula works for any meta-analysis. 

In the hypothetical case where the error variance is identical for all studies, we can work with the sums 
of squares rather than the standardized sums of squares.  In this case the formula would be 

 2 OBS ERR

OBS

SS SS
I

SS
−

= .  

Finally, if we divide each element in this formula by the degrees of freedom we get 

 
−

=2 OBS ERR

OBS

V V
I

V
.  

When the error variance is identical for all studies (as in our example), these three formulas are all 
functionally equivalent.  We used this example so that we could use the variance-based version of the 
formula, which allowed us to show the link between I2 and T2 more clearly.  In any real meta-analysis we 
would use the Q–based version to compute I2, but the concepts discussed in this paper still apply.   
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Formula for computing an approximate range of effects 

When the effect size is a mean difference (as in our example) the standard deviation of true effects (T) is 
in the same metric as the effect sizes (here, days).  In this case we can compute the approximate range 
of effects as the mean plus/minus 2T.  For some effect sizes we need to convert the effect size to 
another metric before performing the computations.  This includes ratios (where computations are 
performed in log units), correlations (Fisher Z units), and prevalence (logit units).   

Suppose the mean risk ratio is 0.6065 and T (in log units) is 0.1000. We would transform the mean effect 
size into log units to get −0.5000.  In log units, the mean plus/minus 2T gives us 

 
= − − × = −
= − + × = −

0.5000 2 0.1000 0.7000
0.5000 2 0.1000 0.3000

LL
UL

   

Then we convert these back into the original metric using 

 
exp( 0.7000) 0.4966
exp( 0.3000) 0.7408

LL
UL

= − =
= − =

   

Prediction intervals 

We computed the approximate range of effects as the mean plus/minus 2T.  This gives us the 
relationship between I2 and T, which is the theme of this paper.  However, in reporting the results of a 
meta-analysis we would want to report the prediction interval (Higgins, Thompson and Spiegelhalter, 
2009; Riley, Higgins and Deeks, 2011).  This differs from the approximate range in two ways.  First, 
rather than multiply T by 2, we multiply it by a number that takes into account the uncertainty with 
which T is estimated.  Second, rather than assume that we know the mean effect size accurately, we 
expand the interval to allow that the effect size is estimated with error. 

Consider the case where the analysis includes nine studies, the mean difference is 50, the error variance 
of the mean difference is 20, T2 is 100, and T is 10.  The approximate range is given by 

 
2
2

LL M T
UL M T

= −
= +

   

which is 

 
50 2 10 30
50 2 10 70

LL
UL

= − × =
= + × =

   

By contrast the prediction interval is given by 
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2

( )

2
( )

'

'

df M

df M

LL M t V T

UL M t V T

= − +

= + +
   

which is   

 
' 50 2.365 20 100 24.097

' 50 2.365 20 100 75.093

LL

UL

= − + =

= + + =
   

In this equation, 2.365 is the t-value corresponding to the 95% interval for 7 df.  The relevant df is the 
number of studies minus 2.  

This prediction interval tells us that if we were to select a population at random from the same universe, 
and run the same study, in 95 of 100 cases the true effect size in that study would fall in the range of 
approximately 24 to 75.  In this example the prediction yields a span that is about 10 days wider than 
the simple range.  The difference between the prediction interval and the simple range tends to be more 
pronounced when the number of studies is small.   

If the effect size is a ratio (or other metric that requires a transformation), the prediction interval is 
computed in the transformed metric and then converted back to the original metric. 
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